Name: Date: Instructor: Section:

Practice Set 2.2

Use the choices below to fill in each blank

- 1. An equation that is a mathematical model of a real-life situation is called a(n)
- 2. To solve a formula for a variable, ______ the variable.
- 3. I = prt is the formula for finding ______.
- **4.** $A = P\left(1 + \frac{r}{n}\right)^{nt}$ is the formula for finding ______.
- 5. In the formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$, the *n* represents the number of times interest is compounded per _____.
- **6.** In the formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$, the *t* represents the time measured in ______.
- 7. In the formula $A = P\left(1 + \frac{r}{n}\right)^{nt}$, the A represents the amount of money ______.
- **8.** In the formula i = prt, the i represents the amount of ______.

Evaluate the following formulas for the values given. Use the π key on your calculator for π when needed.

9. $A = 4\pi r^2$ when r = 4 (surface area of a sphere)

9._____

10. $A = \pi r^2$ when r = 4 (area of circle)

10._____

11. $m = \frac{1}{2}(b_1 + b_2)$ when $b_1 = 4$, $b_2 = 8$ (length of median of a trapezoid)

11.____

12. $C = 2\pi r$ when r = 4

(circumference of a circle)

12.____

13. $A = \frac{4}{3}\pi r^3$ when r = 4

13.____

- (volume of sphere)
- 14. $A = e^3$ when e = 4 (volume of a cube)

14._____

15. $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ when a = 2, b = 3, and c = 1

15.____

(from the quadratic formula)

16. $V = \sqrt{\frac{25,000dp}{l}}$ when d = 2, p = 0.02, l = 10

16.____

(air velocity in a pipe in feet per second)

Solve each equation for *y*.

17.
$$2x + y = 10$$

18.
$$x - 3y = 12$$

19.
$$-3x + 2y = 13$$

20.
$$9x = 5y + 23$$

21.
$$\frac{x}{3} - \frac{y}{4} = 5$$

22.
$$3(x-2) = \frac{2}{3}(y+6)$$

Solve each equation for the indicated variable.

23.
$$d = rt$$
, for r (distance formula)

24.
$$i = prt$$
, for r (simple interest)

25.
$$S_n = \frac{n}{2}(a_1 + a_n)$$
, for n (sum of terms of an arithmetic sequence)

26.
$$L = 2\pi rh$$
, for h (lateral surface area of cylinder)

27.
$$L = \pi r l$$
, for l (lateral surface area of cone)

28.
$$A = \frac{1}{2} \cdot d_1 \cdot d_2$$
, for d_1 (area of rhombus)

Problem Solving

- **29.** Find the simple interest on \$10,000 invested for 10 years at a 5% annual interest rate.
- 29._____
- **30.** Find the compound interest on \$7000 invested for 5 years at a 3% annual interest rate compounded monthly.
- 30.____