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The most commonly used methods for inference about the means of quan-
titative response variables assume that the variables in question have nor-
mal distributions in the population or populations from which we draw our
data. In practice, of course, no distribution is exactly normal. Fortunately, our
usual methods for inference about population means (the one-sample and
two-sample procedures and analysis of variance) are quite That is,
the results of inference are not very sensitive to moderate lack of normality,
especially when the samples are reasonably large. We gave some practical
guidelines for taking advantage of the robustness of these methods in Chap-
ter 7.

What can we do if normal quantile plots suggest that the data are clearly
not normal, especially when we have only a few observations? This is not a
simple question. Here are the basic options:

If there are extreme in a small data set, any inference method
may be suspect. An outlier is an observation that may not come from
the same population as the others. To decide what to do, you must
find the cause of the outlier. Equipment failure that produced a bad
measurement, for example, entitles you to remove the outlier and
analyze the remaining data. If the outlier appears to be “real data,” it
is risky to draw any conclusion from just a few observations. This is
the advice we gave to the child development researcher in Example 2.19
(page 163).

Sometimes we can our data so that their distribution is more
nearly normal. Transformations such as the logarithm that pull in the
long tail of right-skewed distributions are particularly helpful. We used
the logarithm transformation in Example 7.10 (page 519) to make the
right-skewed distribution of carbon monoxide in vehicle exhausts more
nearly normal.

In some settings, replace the normal
distributions as models for the overall pattern in the population. We
mentioned in Section 5.2 that the Weibull distributions are common
models for the lifetimes in service of equipment in statistical studies
of reliability. There are inference procedures for the parameters of
these distributions that replace the procedures when we use specific
nonnormal models.

Finally, there are inference procedures that do not assume any
specific form for the distribution of the population. These are called

. They are the subject of this chapter.

The word contrasts these methods with statistical methods
that are based on models of a specific form and use data to estimate the pa-
rameters in these models. For example, simple linear regression (Sections 2.3
and 10.1) uses a straight-line model. The parameters in this model are the
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Comparison of tests based on normal distributions with
nonparametric tests for similar settings.

nonparametric regression.

sign test

t

t

F

t

counts.

ranks.

center

Setting Normal test Rank test

One sample One-sample test Wilcoxon signed rank test
Section 7.1 Section 14.2

Matched pairs Apply one-sample test to differences within pairs

Two independent samples Two-sample test Wilcoxon rank sum test
Section 7.2 Section 14.1

Several independent samples One-way ANOVA test Kruskal-Wallis test
Chapter 12 Section 14.3

slope and intercept of the line, and we can use the least-squares method to
estimate these parameters from data. Scatterplot smoothers (Section 2.1), in
contrast, do not assume any specific form for the relationship. When we use
a smoother, we are doing

This chapter concerns one type of nonparametric procedure, tests that
can replace the tests and one-way analysis of variance when the normality
assumptions for those tests are not met. There are two big ideas that can serve
as the basis for nonparametric tests. One is to use This is the basis of
the for matched pairs, discussed on pages 519–522. The other is to
use This chapter discusses rank tests.

Figure 14.1 presents an outline of the standard tests (based on normal
distributions) and the rank tests that compete with them. All of these tests
concern the of a population or populations. When a population has
at least roughly a normal distribution, we describe its center by the mean.
The “normal tests” in Figure 14.1 all test hypotheses about population means.
When distributions are strongly skewed, the mean may not be the preferred
measure of center. We will see that rank tests do not test hypotheses about
means.

We devote a section of this chapter to each of the rank procedures. Sec-
tion 14.1, which discusses the most common of these tests, also contains
general information about rank tests. The kind of assumptions required, the
nature of the hypotheses tested, the big idea of using ranks, and the contrast
between exact distributions for use with small samples and approximations
for use with larger samples are common to all rank tests. Sections 14.2 and
14.3 more briefly describe other rank tests.

Two-sample problems (see page 537) are among the most common in statis-
tics. The most useful nonparametric significance test compares two distribu-
tions. Here is an example of this setting.

FIGURE 14.1

14.1 The Wilcoxon Rank Sum Test

nonparametric
regression

sign test
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Normal quantile plots of corn yields from plots with no weeds
(left) and with 3 weeds per meter of row (right).

165.0 166.7 172.2 176.9

EXAMPLE 14.1

t

We first rank all 8 observations together. To do this, arrange them in order
from smallest to largest:

153.1 156.0 158.6 176.4

The boldface entries in the list are the yields with no weeds present. We see
that four of the five highest yields come from that group, suggesting that yields

1

FIGURE 14.2

The rank transformation

Chapter 14: Nonparametric Tests

Does the presence of small numbers of weeds reduce the yield of corn? Lamb’s-
quarter is a common weed in corn fields. A researcher planted corn at the same rate
in 8 small plots of ground, then weeded the corn rows by hand to allow no weeds in
4 randomly selected plots and exactly 3 lamb’s-quarter plants per meter of row in the
other 4 plots. Here are the yields of corn (bushels per acre) in each of the plots:

Weeds per meter Yield (bushels/acre)

0 166.7 172.2 165.0 176.9
3 158.6 176.4 153.1 156.0

Normal quantile plots (Figure 14.2) suggest that the data may be right-skewed. The
samples are too small to assess normality adequately or to rely on the robustness of
the two-sample test. We may prefer to use a test that does not require normality.

4



165.0 166.7 172.2 176.9

4 5 6 8

rank

ranks:

sums

` 4

are higher with no weeds. The idea of rank tests is to look just at position
in this ordered list. To do this, replace each observation by its order, from 1
(smallest) to 8 (largest). These numbers are the

Yield 153.1 156.0 158.6 176.4

Rank 1 2 3 7

To rank observations, first arrange them in order from smallest to largest.
The of each observation is its position in this ordered list, starting
with rank 1 for the smallest observation.

Moving from the original observations to their ranks is a transformation
of the data, like moving from the observations to their logarithms. The rank
transformation retains only the ordering of the observations and makes no
other use of their numerical values. Working with ranks allows us to dispense
with specific assumptions about the shape of the distribution, such as nor-
mality.

If the presence of weeds reduces corn yields, we expect the ranks of the
yields from plots with weeds to be smaller as a group than the ranks from
plots without weeds. We might compare the of the ranks from the two
treatments:

Sum
Treatment of ranks

No weeds 23
Weeds 13

These sums measure how much the ranks of the weed-free plots as a group
exceed those of the weedy plots. In fact, the sum of the ranks from 1 to 8 is
always equal to 36, so it is enough to report the sum for one of the two groups.
If the sum of the ranks for the weed-free group is 23, the ranks for the other
group must add to 13 because 23 13 36. If the weeds have no effect, we
would expect the sum of the ranks in either group to be 18 (half of 36). Here
are the facts we need in a more general form that takes account of the fact
that our two samples need not be the same size.

The Wilcoxon rank sum test

14.1 The Wilcoxon Rank Sum Test 5
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Wilcoxon rank sum statistic.

Wilcoxon rank sum test

EXAMPLE 14.2
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Draw an SRS of size from one population and draw an independent SRS
of size from a second population. There are observations in all, where

. Rank all observations. The sum of the ranks for the first
sample is the If the two populations have
the same continuous distribution, then has mean

( 1)
2

and standard deviation

( 1)
12

The rejects the hypothesis that the two popu-
lations have identical distributions when the rank sum is far from its
mean.*

In the corn yield study of Example 14.1, we want to test

: no difference in distribution of yields

against the one-sided alternative

: yields are systematically higher in weed-free plots

Our test statistic is the rank sum 23 for the weed-free plots.
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In Example 14.1, 4, 4, and there are 8 observations in all. The sum
of ranks for the weed-free plots has mean

( 1) (4)(9)
18

2 2

and standard deviation

( 1) (4)(4)(9)
12 3 464

12 12

Although the observed rank sum 23 is higher than the mean, it is only about 1.4
standard deviations high. We now suspect that the data do not give strong evidence
that yields are higher in the population of weed-free corn.

The -value for our one-sided alternative is ( 23), the probability that
is at least as large as the value for our data when is true.

!! !

!

*This test was invented by Frank Wilcoxon (1892–1965) in 1945. Wilcoxon was a chemist who
encountered statistical problems in his work at the research laboratories of the American
Cyanimid company.
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Exact Wilcoxon rank-sum test

data: 0weeds and 3weeds

rank-sum statistic W = 23, n = 4, m = 4, p-value = 0.100

alternative hypothesis: true mu is greater than 0

Output from the S-Plus statistical software for the data in
Example 14.1. This program uses the exact distribution for W when the samples
are small and there are no ties (that is, when all observations have different
values).

continuity correction

EXAMPLE 14.3
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To calculate the -value ( 23), we need to know the sampling distri-
bution of the rank sum when the null hypothesis is true. This distribution
depends on the two sample sizes and . Tables are therefore a bit unwieldy,
though you can find them in handbooks of statistical tables. Most statistical
software will give you -values, as well as carry out the ranking and calculate

. However, some software packages give only approximate -values. You
must learn what your software offers.

It is worth noting that the two-sample test gives essentially the same
result as the Wilcoxon test in Example 14.3 ( 1 554, 0 0937). It is in
fact somewhat unusual to find a strong disagreement between the conclusions
reached by these two tests.

The rank sum statistic becomes approximately normal as the two sample
sizes increase. We can then form yet another statistic by standardizing :

( 1) 2

( 1) 12

Use standard normal probability calculations to find -values for this statis-
tic. Because takes only whole-number values, the
improves the accuracy of the approximation.

4 4

W

W

FIGURE 14.3

The normal approximation

1 2

1

1 2

14.1 The Wilcoxon Rank Sum Test

continuity correction

Figure 14.3 shows the output from a software package that calculates the exact sam-
pling distribution of . We see that the sum of the ranks in the weed-free group
is 23, with -value 0 10 against the one-sided alternative that weed-free
plots have higher yields. There is some evidence that weeds reduce yield, considering
that we have data from only four plots for each treatment. The evidence does not,
however, reach the levels usually considered convincing.
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EXAMPLE 14.4

EXAMPLE 14.5
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We recommend always using either the exact distribution (from software
or tables) or the continuity correction for the rank sum statistic . The exact
distribution is of course safer for small samples. As Example 14.4 illustrates,
however, the normal approximation with the continuity correction is often
adequate.

Our null hypothesis is that weeds do not affect yield. Our alternative hypothe-
sis is that yields are lower when weeds are present. If we are willing to assume
that yields are normally distributed, or if we have reasonably large samples,
we use the two-sample test for means. Our hypotheses then become

:

:

When the distributions may not be normal, we might restate the hypothe-
ses in terms of population medians rather than means:

: median median
: median median

Mann-Whitney
test.

4 4 4
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What hypotheses does Wilcoxon test?

0 1 2

1 2

0 1 2

1 2
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Mann-Whitney test
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The standardized rank sum statistic in our corn yield example is

23 18
1 44

3 464

We expect to be larger when the alternative hypothesis is true, so the approximate
-value is

( 1 44) 0 0749

The continuity correction (see page 386) acts as if the whole number 23 occupies the
entire interval from 22.5 to 23.5. We calculate the -value ( 23) as (
22 5) because the value 23 is included in the range whose probability we want. Here
is the calculation:

22 5 18
( 22 5)

3 464

( 1 30)

0 0968

The continuity correction gives a result closer to the exact value 0 10.

Figure 14.4 shows the output for our data from two more statistical programs.
Minitab offers only the normal approximation, and it refers to the

This is an alternate form of the Wilcoxon rank sum test. SAS carries out both
the exact and approximate tests. SAS calls the rank sum rather than and gives
the mean 18 and standard deviation 3.464 as well as the statistic 1.299 (using the
continuity correction). SAS gives the approximate two-sided -value as 0.1939, so
the one-sided result is half this, 0 0970. This agrees with Minitab and (up to a
small roundoff error) with our result in Example 14.4. This approximate -value is
close to the exact result 0 1000, given by SAS and in Figure 14.3.

1 2

W
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W

W
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m m

m m
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Wilcoxon Scores (Rank Sums) for Variable YIELD
Classified by Variable WEEDS

Sum of Expected Std Dev Mean
WEEDS N Scores Under H0 Under H0 Score

0 4 23.0 18.0 3.46410162 5.75000000
3 4 13.0 18.0 3.46410162 3.25000000

Wilcoxon 2-Sample Test S = 23.0000

Exact P-Values
(One-sided) Prob >= S = 0.1000
(Two-sided) Prob >= |S - Mean| = 0.2000

Normal Approximation (with Continuity Correction of .5)
Z = 1.29904 Prob > |Z| = 0.1939

Output from the Minitab and SAS statistical software for the
data in Example 14.1. (a) Minitab uses the normal approximation for the
distribution of . (b) SAS gives both the exact and approximate values.

the same shape.

The Wilcoxon rank sum test provides a significance test for these hypotheses,
but only if an additional assumption is met: both populations must have con-
tinuous distributions of That is, the density curve for corn
yields with 3 weeds per meter looks exactly like that for no weeds except that
it may slide to a different location on the scale of yields. The Minitab output

(a)

(b)

FIGURE 14.4

14.1 The Wilcoxon Rank Sum Test

W
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any

assign all tied val-
ues the of the ranks they occupy.

in Figure 14.4(a) states the hypotheses in terms of population medians (which
it calls “eta”) and also gives a confidence interval for the difference between
the two population medians.

The same-shape assumption is too strict to be reasonable in practice. For-
tunately, the Wilcoxon test also applies in a much more general and more
useful setting. It tests hypotheses that we can state in words as

: two distributions are the same
: one has values that are systematically larger

Here is a more exact statement of the “systematically larger” alternative
hypothesis. Take to be corn yield with no weeds and to be corn yield
with 3 weeds per meter. These yields are random variables. That is, every
time we plant a plot with no weeds, the yield is a value of the variable . The
probability that the yield is more than 160 bushels per acre when no weeds
are present is ( 160). If weed-free yields are “systematically larger” than
those with weeds, yields higher than 160 should be more likely with no weeds.
That is, we should have

( 160) ( 160)

The alternative hypothesis says that this inequality holds not just for 160 but
for yield we care to specify. No weeds always puts more probability “to
the right” of whatever yield we are interested in.

This exact statement of the hypotheses we are testing is a bit awkward.
The hypotheses really are “nonparametric” because they do not involve any
specific parameter such as the mean or median. If the two distributions do
have the same shape, the general hypotheses reduce to comparing medians.
Many texts and computer outputs state the hypotheses in terms of medians,
sometimes ignoring the same-shape requirement. We recommend that you
express the hypotheses in words rather than symbols. “Yields are systemati-
cally higher in weed-free plots” is easy to understand and is a good statement
of the effect that the Wilcoxon test looks for.

The exact distribution for the Wilcoxon rank sum is obtained assuming that
all observations in both samples take different values. This allows us to
rank them all. In practice, however, we often find observations tied at the
same value. What shall we do? The usual practice is to

Here is an example with 6 obser-
vations:

Observation 153 155 158 158 161 164

Rank 1 2 3.5 3.5 5 6

a

Ties

0

1 2

1

1

1 2

2

Chapter 14: Nonparametric Tests

average ranks
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EXAMPLE 14.6

W

The tied observations occupy the third and fourth places in the ordered list,
so they share rank 3.5.

The exact distribution for the Wilcoxon rank sum only applies to data
without ties. Moreover, the standard deviation must be adjusted if ties
are present. The normal approximation can be used after the standard de-
viation is adjusted. Statistical software will detect ties, make the necessary
adjustment, and switch to the normal approximation. In practice, software is
required if you want to use rank tests when the data contain tied values.

It is sometimes useful to apply rank tests to data that have very many ties
because the scale of measurement has only a few values. Here is an example.

We should first ask if the subjects in Example 14.6 are a random sample
of people who attend fairs, at least in the Midwest. The researcher visited 11
different fairs. She stood near the entrance and stopped every 25th adult who
passed. Because no personal choice was involved in choosing the subjects,
we can reasonably treat the data as coming from a random sample. (As usual,
there was some nonresponse, which could create bias.)

Here are the data, presented as a two-way table of counts:

Response

1 2 3 4 5 Total

Female 13 108 50 23 2 196
Male 22 57 22 5 1 107

Total 35 165 72 28 3 303

Comparing row percentages shows that the women in the sample are more
concerned about food safety than the men:

4

4

4

4

4

W

3

14.1 The Wilcoxon Rank Sum Test

Food sold at outdoor fairs and festivals may be less safe than food sold in restaurants
because it is prepared in temporary locations and often by volunteer help. What do
people who attend fairs think about the safety of the food served? One study asked
this question of people at a number of fairs in the Midwest:

How often do you think people become sick because of food they consume pre-
pared at outdoor fairs and festivals?

The possible responses were

1 very rarely
2 once in a while
3 often
4 more often than not
5 always

In all, 303 people answered the question. Of these, 196 were women and 107 were
men. Is there good evidence that men and women differ in their perceptions about
food safety at fairs?

s
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Wilcoxon Scores (Rank Sums) for Variable SFAIR
Classified by Variable GENDER

Sum of Expected Std Dev Mean
GENDER N Scores Under H0 Under H0 Score

Female 196 31943.5000 29792.0 660.006327 162.977041
Male 107 14112.5000 16264.0 660.006327 131.892523

Average Scores Were Used for Ties

Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)

S = 14112.5 Z = -3.25906 Prob > |Z| = 0.0011

Output from SAS for the food safety study in Example 14.6. The
approximate two-sided -value is 0.0011.

EXAMPLE 14.7

. P .

H
H

W , . z .
P P .

4 4 4

Response

1 2 3 4 5 Total

Female 6.6% 55.1% 25.5% 11.7% 1.0% 100%
Male 20.6% 53.3% 20.6% 4.7% 1.0% 100%

Is the difference between the genders statistically significant?
We might apply the chi-square test (Chapter 9). It is highly significant

(X 16 120, df 4, 0 0029). Although the chi-square test answers our
general question, it ignores the ordering of the responses and so does not use
all of the available information. We would really like to know whether men or
women are more concerned about food safety. This question depends on the
ordering of responses from least concerned to most concerned. We can use
the Wilcoxon test for the hypotheses

: men and women do not differ in their responses
: one of the two genders gives systematically

larger responses than the other

The alternative hypothesis is two-sided. Because the responses can take only
five values, there are very many ties. All 35 people who chose “very rarely” are
tied at 1, and all 165 who chose “once in a while” are tied at 2.

4 4

4

a

FIGURE 14.5

2

0

Chapter 14: Nonparametric Tests

2

Figure 14.5 gives computer output for the Wilcoxon test. The rank sum for men
(using average ranks for ties) is 14 112 5. The standardized value is 3 259
with two-sided -value 0 0011. There is very strong evidence of a difference.
Women are more concerned than men about the safety of food served at fairs.

P
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With more than 100 observations in each group and no outliers, we might
use the two-sample even though responses take only five values. In fact, the
results for Example 14.6 are 3 2719 with 0 0012. The -value for the
two-sample test is almost exactly equal to that for the Wilcoxon test. There is,
however, another reason to prefer the rank test in this example. The statistic
treats the response values 1 through 5 as meaningful numbers. In particu-
lar, the possible responses are treated as though they are equally spaced. The
difference between “very rarely” and “once in a while” is the same as the dif-
ference between “once in a while” and “often.” This may not make sense. The
rank test, on the other hand, uses only the order of the responses, not their ac-
tual values. The responses are arranged in order from least to most concerned
about safety, so the rank test makes sense. Some statisticians avoid using
procedures when there is not a fully meaningful scale of measurement.

The examples we have given illustrate the potential usefulness of nonpara-
metric tests. Nonetheless, rank tests are of secondary importance relative to
inference procedures based on the normal distribution.

Nonparametric inference is largely restricted to simple settings. Normal
inference extends to methods for use with complex experimental
designs and multiple regression, but nonparametric tests do not. We
stress normal inference in part because it leads on to more advanced
statistics.

Normal tests compare means and are accompanied by simple
confidence intervals for means or differences between means. When
we use nonparametric tests to compare medians, we can also give
confidence intervals, though they are rather awkward to calculate.
However, the usefulness of nonparametric tests is clearest in settings
when they do not simply compare medians—see the discussion of
“What hypotheses does Wilcoxon test?” In these settings, there is no
measure of the of the observed effect that is closely related to the
rank test of the of the effect.

The robustness of normal tests for means implies that we rarely
encounter data that require nonparametric procedures to obtain
reasonably accurate -values. The and tests give very similar
results in our examples. Nonetheless, many statisticians would not use
a test in Example 14.6 because the response variable gives only the
order of the responses.

There are more modern and more effective ways to escape the
assumption of normality, such as bootstrap methods (see page 445).

do not require any specific form for the distribution of
the population from which our samples come.

SUMMARY

Limitations of nonparametric tests

Summary 13



Rank tests ranks

Wilcoxon rank sum test

Wilcoxon rank sum statistic
two-sample test.

-values

14.1

(a)

(b)

W
t

P
W

P

Statistical software is very helpful in doing these exercises. If you do not
have access to software, base your work on the normal approximation with
continuity correction.

t
t P

are nonparametric tests based on the of observations, their
positions in a list ordered from smallest (rank 1) to largest. Tied observations
receive the average of their ranks.

The compares two distributions to assess whether
one has systematically larger values than the other. The Wilcoxon test is based
on the , which is the sum of the ranks of one
of the samples. The Wilcoxon test can replace the

for the Wilcoxon test are based on the sampling distribution of the
rank sum statistic when the null hypothesis (no difference in distributions)
is true. You can find -values from special tables, software, or a normal ap-
proximation (with continuity correction).

A study of early childhood education asked kindergarten students to tell a
fairy tale that had been read to them earlier in the week. The 10 children
in the study included 5 high-progress readers and 5 low-progress readers.
Each child told two stories. Story 1 had been read to them; Story 2 had been
read and also illustrated with pictures. An expert listened to a recording of
the children and assigned a score for certain uses of language. Here are the
data (provided by Susan Stadler, Purdue University):

Child Progress Story 1 score Story 2 score

1 high 0.55 0.80
2 high 0.57 0.82
3 high 0.72 0.54
4 high 0.70 0.79
5 high 0.84 0.89
6 low 0.40 0.77
7 low 0.72 0.49
8 low 0.00 0.66
9 low 0.36 0.28

10 low 0.55 0.38

Is there evidence that the scores of high-progress readers are higher than
those of low-progress readers when they retell a story they have heard
without pictures (Story 1)?

Make normal quantile plots for the 5 responses in each group. Are any
major deviations from normality apparent?

Carry out a two-sample test. State hypotheses and give the two
sample means, the statistic and its -value, and your conclusion.

SECTION 14.1 EXERCISES

Chapter 14: Nonparametric Tests14
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Carry out the Wilcoxon rank sum test. State hypotheses and give
the rank sum for high-progress readers, its -value, and your
conclusion. Do the and Wilcoxon tests lead you to different
conclusions?

Repeat the analysis of Exercise 14.1 for the scores when children retell a
story they have heard and seen illustrated with pictures (Story 2).

Use the data in Exercise 14.1 for children telling Story 2 to carry out by
hand the steps in the Wilcoxon rank sum test.

Arrange the 10 observations in order and assign ranks. There are no
ties.

Find the rank sum for the five high-progress readers. What are the
mean and standard deviation of under the null hypothesis that
low-progress and high-progress readers do not differ?

Standardize to obtain a statistic. Do a normal probability
calculation with the continuity correction to obtain a one-sided

-value.

The data for Story 1 contain tied observations. What ranks would you
assign to the 10 scores for Story 1?

The corn yield study of Example 14.1 also examined yields in four plots
having 9 lamb’s-quarter plants per meter of row. The yields (bushels per
acre) in these plots were

162.8 142.4 162.7 162.4

There is a clear outlier, but rechecking the results found that this is the
correct yield for this plot. The outlier makes us hesitant to use procedures
because and are not resistant.

Is there evidence that 9 weeds per meter reduces corn yields when
compared with weed-free corn? Use the Wilcoxon rank sum test with
the data above and some of the data from Example 14.1 to answer this
question.

Compare the results from (a) with those from the two-sample test for
these data.

Now remove the low outlier 142.4 from the data with 9 weeds per
meter. Repeat both the Wilcoxon and analyses. By how much did the
outlier reduce the mean yield in its group? By how much did it increase
the standard deviation? Did it have a practically important impact on
your conclusions?

Example 7.17 (page 547) reports the results of a study of the effect of the
pesticide DDT on nerve activity in rats. The data for the DDT group are

12.207 16.869 25.050 22.429 8.456 20.589

Section 14.1 Exercises 15
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The control group data are

11.074 9.686 12.064 9.351 8.182 6.642

It is difficult to assess normality from such small samples, so we might use a
nonparametric test to assess whether DDT affects nerve response.

State the hypotheses for the Wilcoxon test.

Carry out the test. Report the rank sum , its -value, and your
conclusion.

The two-sample test used in Example 7.17 found that 2 9912,
0 0247. Are your results different enough to change the conclusion

of the study?

In Example 7.14, we compared the DRP scores of two groups of third
graders who followed different reading curricula. The data appear in Table
7.2 (page 543).

Apply the Wilcoxon rank sum test to these data and compare your
result with the 0 0132 obtained from the two-sample test in
Example 7.14.

What are the null and alternative hypotheses for the test? For the
Wilcoxon test?

Table 7.3 (page 552) gives data on blood pressure before and after treatment
for two groups of black males. One group took a calcium supplement, and
the other group received a placebo. Example 7.20 compares the decrease
in blood pressure in the two groups using pooled two-sample procedures,
and Exercise 7.69 applies the more general two-sample procedures. The
normal quantile plot for the calcium group (Figure 7.14, page 552) shows
some departure from normality, though not enough to prevent use of
procedures.

Use the Wilcoxon rank sum test to analyze these data. Compare your
findings with those of Example 7.20 (page 553) and Exercise 7.69 (page
563).

What are the null and alternative hypotheses for each of the three tests
we have applied to these data?

What must we assume about the data to apply each of the three tests?

Exercise 7.51 (page 556) studies the effect of piano lessons on the spatial-
temporal reasoning of preschool children. The data there concern 34
children who took piano lessons and a control group of 44 children. The
data take only small whole-number values. Use the Wilcoxon rank sum
test (there are many ties) to decide whether piano lessons improve spatial-
temporal reasoning.

Example 14.6 describes a study of the attitudes of people attending outdoor
fairs about the safety of the food served at such locations. The full data set
is stored on the CD as the file eg14.06.dat. It contains the responses of
303 people to several questions. The variables in this data set are (in order)

Chapter 14: Nonparametric Tests16
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subject hfair sfair sfast srest gender

The variable “sfair” contains the responses described in the example con-
cerning safety of food served at outdoor fairs. The variable “srest” contains
responses to the same question asked about food served in restaurants. The
variable “gender” contains 1 if the respondent is a woman, 2 if he is a man.
We saw that women are more concerned than men about the safety of food
served at fairs. Is this also true for restaurants?

The data file used in Example 14.6 and Exercise 14.9 contains 303 rows,
one for each of the 303 respondents. Each row contains the responses of
one person to several questions. We wonder if people are more concerned
about the safety of food served at fairs than they are about the safety of food
served at restaurants. Explain carefully why we answer this question
by applying the Wilcoxon rank sum test to the variables “sfair” and “srest.”

Shopping at secondhand stores is becoming more popular and has even
attracted the attention of business schools. To study customers’ attitudes
toward secondhand stores, researchers interviewed samples of shoppers at
two secondhand stores of the same chain in two cities. Here are data on
the incomes of shoppers at the two stores, presented as a two-way table
of counts. (From William D. Darley, “Store-choice behavior for pre-owned
merchandise,” 27 (1993), pp. 17–31.)

Income code Income City 1 City 2

1 Under $10,000 70 62
2 $10,000 to $19,999 52 63
3 $20,000 to $24,999 69 50
4 $25,000 to $34,999 22 19
5 $35,000 or more 28 24

Is there a relationship between city and income? Use the chi-square test
to answer this question.

The chi-square test ignores the ordering of the income categories. The
data file ex14.11.dat on the CD contains data on the 459 shoppers
in this study. The first variable is the city (City1 or City2) and the
second is the income code as it appears in the table above (1 to 5).
Is there good evidence that shoppers in one city have systematically
higher incomes than in the other?

We use the one-sample procedures for inference about the mean of one
population or for inference about the mean difference in a matched pairs
setting. The matched pairs setting is more important because good studies
are generally comparative. The (page 519) is a nonparametric test

14.2 The Wilcoxon Signed Rank Test

14.2 The Wilcoxon Signed Rank Test
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Normal quantile plot and histogram for the five differences in
Example 14.8.

EXAMPLE 14.8
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based on counts for matched pairs. We will now meet a rank test for this
setting.

Positive differences in Example 14.8 indicate that the child performed
better telling Story 2. If scores are generally higher with illustrations, the pos-
itive differences should be farther from zero in the positive direction than the
negative differences are in the negative direction. We therefore compare the

4 4

4

0

FIGURE 14.6
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2 2 2

A study of early childhood education asked kindergarten students to tell a fairy tale
that had been read to them earlier in the week. Each child told two stories. The
first had been read to them and the second had been read but also illustrated with
pictures. An expert listened to a recording of the children and assigned a score for
certain uses of language. Here are the data for five “low-progress” readers in a pilot
study:

Child 1 2 3 4 5

Story 2 0.77 0 49 0.66 0 28 0 38
Story 1 0.40 0 72 0.00 0 36 0 55
Difference 0.37 0 23 0.66 0 08 0 17

We wonder if illustrations improve how the children retell a story. We would like to
test the hypotheses

: scores have the same distribution for both stories
: scores are systematically higher for Story 2

Because this is a matched pairs design, we base our inference on the differences. The
matched pairs test gives 0 635 with one-sided -value 0 280. Displays of
the data (Figure 14.6) suggest a mild lack of normality. We would like to use a rank
test.

a
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Wilcoxon signed rank statistic.

Wilcoxon signed rank test
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of the differences, that is, their magnitudes without a sign.
Here they are, with boldface indicating the positive values:

0.23 0.08 0.17

Arrange these in increasing order and assign ranks, keeping track of which
values were originally positive. Tied values receive the average of their ranks.
If there are zero differences, discard them before ranking.

Absolute value 0.08 0.17 0.23

Rank 1 2 3

The test statistic is the sum of the ranks of the positive differences. (We could
equally well use the sum of the ranks of the negative differences.) This is the

Its value here is 9.

Draw an SRS of size from a population for a matched pairs study and
take the differences in responses within pairs. Rank the absolute values of
these differences. The sum of the ranks for the positive differences is
the If the responses have a continuous
distribution that is not affected by the different treatments within pairs,
then has mean

( 1)
4

and standard deviation

( 1)(2 1)
24

The rejects the hypothesis that there are no
systematic differences within pairs when the rank sum is far from its
mean.
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14.2 The Wilcoxon Signed Rank Test
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In the storytelling study of Example 14.8, 5. If the null hypothesis (no systematic
effect of illustrations) is true, the mean of the signed rank statistic is

( 1) (5)(6)
7 5

4 4

Our observed value 9 is only slightly larger than this mean. The one-sided
-value is ( 9).

Figure 14.7 displays the output of two statistical programs. We see that the one-
sided -value for the Wilcoxon signed rank test with 5 observations and 9
is 0 4062. This result differs from the test result 0 280, but both tell us
that this very small sample gives no evidence that seeing illustrations improves the
storytelling of low-progress readers.
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Story2 - Story1:
Test Ho: Median (Story2-Story1) = 0 vs Ha : Median (Story2-Story1) > 0
                                      

Wilcoxon Signed Rank



			 Rank Totals         Cases            Mean Rank

9
6
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3
0
5

4.500
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Negative Ranks
Ties
Total

p = 0.4062



Exact Wilcoxon signed-rank test

data: Story2-Story1

signed-rank statistic V = 9, n = 5, p-value = 0.4062

alternative hypothesis: true mu is greater than 0

Output from (a) S-Plus and (b) Data Desk for the storytelling study
in Example 14.9. These programs use the exact distribution of when the
sample size is small and there are no ties.
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The distribution of the signed rank statistic when the null hypothesis (no dif-
ference) is true becomes approximately normal as the sample size becomes
large. We can then use normal probability calculations (with the continuity
correction) to obtain approximate -values for . Let’s see how this works
in the storytelling example, even though 5 is certainly not a large sample.
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FIGURE 14.7
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For 5 observations, we saw in Example 14.9 that 7 5. The standard de-
viation of under the null hypothesis is

( 1)(2 1) (5)(6)(25)
31 25 5 590

24 24

The continuity correction calculates the -value ( 9) as ( 8 5), treat-
ing the value 9 as occupying the interval from 8.5 to 9.5. We find the normal
approximation for the -value by standardizing and using the standard normal table:

7 5 9 7 5
( 8 5) ( 0 27) 0 394

5 590 5 590

Despite the small sample size, the normal approximation gives a result quite close to
the exact value 0 4062.
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5 6 5 5 16 3

3 5 5 5 6 16

3.5 8 8 8 11 12

EXAMPLE 14.11
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Ties among the absolute differences are handled by assigning average ranks.
A tie a pair creates a difference of zero. Because these are neither pos-
itive nor negative, we drop such pairs from our sample. As in the case of the
Wilcoxon rank sum, ties complicate finding a -value. There is no longer a
usable exact distribution for the signed rank statistic , and the standard
deviation must be adjusted for the ties before we can use the normal
approximation. Software will do this. Here is an example.

The absolute values of the differences, with boldface indicating those that
are negative, are

5 2 5 4 3 1

Arrange these in increasing order and assign ranks, keeping track of which
values were originally negative. Tied values receive the average of their ranks.

Absolute value 1 2 3 4 5 5

Rank 1 2 3.5 5 8 8

The Wilcoxon signed rank statistic is the sum of the ranks of the negative
differences. (We could equally well use the sum for the ranks of the positive
differences.) Its value is 50 5.

`

`

W

0

Ties

14.2 The Wilcoxon Signed Rank Test

2 2 2 2 2 2

Here are the golf scores of 12 members of a college women’s golf team in two rounds
of tournament play. (A golf score is the number of strokes required to complete the
course, so that low scores are better.)

Player 1 2 3 4 5 6 7 8 9 10 11 12

Round 2 94 85 89 89 81 76 107 89 87 91 88 80
Round 1 89 90 87 95 86 81 102 105 83 88 91 79
Difference 5 5 2 6 5 5 5 16 4 3 3 1

Negative differences indicate better (lower) scores on the second round. We see that
6 of the 12 golfers improved their scores. We would like to test the hypotheses that
in a large population of collegiate women golfers

: scores have the same distribution in Rounds 1 and 2

: scores are systematically lower or higher in Round 2

A normal quantile plot of the differences (Figure 14.8) shows some irregularity and
a low outlier. We will use the Wilcoxon signed rank test.
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Normal quantile plot for Example 14.11 of the differences in
scores for two rounds of a golf tournament.

Wilcoxon signed rank test
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The applies to matched pairs studies. It tests the
null hypothesis that there is no systematic difference within pairs against al-
ternatives that assert a systematic difference (either one-sided or two-sided).

The test is based on the which is the
sum of the ranks of the positive (or negative) differences when we rank the
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SUMMARY

FIGURE 14.8
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`

Here are the two-sided -values for the Wilcoxon signed rank test for the golf score
data from several statistical programs:

Program -value

Data Desk 0 366
Minitab 0 388
SAS 0 388
S-PLUS 0 384

All lead to the same practical conclusion: these data give no evidence for a systematic
change in scores between rounds. However, the -values reported differ a bit from
program to program. The reason for the variations is that the programs use slightly
different versions of the approximate calculations needed when ties are present. The
exact result depends on which of these variations the programmer chooses to use.

For these data, the matched pairs test gives 0 9314 with 0 3716. Once
again, and lead to the same conclusion.
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Statistical software is very helpful in doing these exercises. If you do not
have access to software, base your work on the normal approximation with
continuity correction.

W P

not

W
n

absolute values of the differences. The and the
are alternative tests in this setting.

for the signed rank test are based on the sampling distribution of
when the null hypothesis is true. You can find -values from special ta-

bles, software, or a normal approximation (with continuity correction).

Table 7.1 (page 514) presents the scores on a test of understanding of
spoken French for a group of high school French teachers before and after a
summer language institute. The improvements in scores between the pretest
and the posttest for the 20 teachers were

2 0 6 6 3 3 2 3 6 6 6 6 3 0 1 1 0 2 3 3

A normal quantile plot (Figure 7.7, page 515) shows granularity and a low
outlier. We might wish to avoid the assumption of normality by using a rank
test. Use the Wilcoxon signed rank procedure to reach a conclusion about
the effect of the language institute. State hypotheses in words and report the
statistic , its -value, and your conclusion. (Note that there are many
ties in the data.)

Exercise 7.35 (page 532) gives the scores on a test of comprehension of
spoken Spanish for 20 teachers before and after they attended a summer
language institute. We want to know whether the institute improves
Spanish comprehension.

State the null and alternative hypotheses.

Explain why the Wilcoxon rank sum test is appropriate.

Give numerical measures that describe what the data show. Then use
the Wilcoxon signed rank test to assess significance. What do you
conclude?

Show the assignment of ranks and the calculation of the signed rank
statistic for the data in Exercise 14.12. Remember that zeros are
dropped from the data before ranking, so that is the number of nonzero
differences within pairs.

Example 14.6 describes a study of the attitudes of people attending outdoor
fairs about the safety of the food served at such locations. The full data set
is stored on the CD as the file eg14.06.dat. It contains the responses of 303
people to several questions. The variables in this data set are (in order):

subject hfair sfair sfast srest gender

The variable “sfair” contains responses to the safety question described in
Example 14.6. The variable “srest” contains responses to the same question

`

`

`
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14.16

14.17

P

Notophthalmus viridescens Journal of Experimental Zoology,

asked about food served in restaurants. We suspect that restaurant food
will appear safer than food served outdoors at a fair. Do the data give good
evidence for this suspicion? (Give descriptive measures, a test statistic and
its -value, and your conclusion.)

The food safety survey data described in Example 14.6 and Exercise 14.15
also contain the responses of the 303 subjects to the same question asked
about food served at fast-food restaurants. These responses are the
values of the variable “sfast.” Is there a systematic difference between
the level of concern about food safety at outdoor fairs and at fast-food
restaurants?

Differences of electric potential occur naturally from point to point on a
body’s skin. Is the natural electric field strength best for helping wounds to
heal? If so, changing the field will slow healing. The research subjects are
anesthetized newts. Make a razor cut in both hind limbs. Let one
heal naturally (the control). Use an electrode to change the electric field
in the other to half its normal value. After two hours, measure the
healing rate. Here are healing rates (in micrometers per hour) for
14 newts. (Data provided by Drina Iglesia, Purdue University.
The study results are reported in D. D. S. Iglesia, E. J. Cragoe, Jr.,
and J. W. Vanable, “Electric field strength and epithelization in the
newt ( ),”
274 (1996), pp. 56–62.)

Experimental Control Difference
Newt limb limb in healing

01 24 25 1
02 23 13 10
03 47 44 3
04 42 45 3
05 26 57 31
06 46 42 4
07 38 50 12
08 33 36 3
09 28 35 7
10 28 38 10
11 21 43 22
12 27 31 4
13 25 26 1
14 45 48 3

The researchers want to know if changing the electric field reduces the
healing rate for newts. State hypotheses, carry out a test, and give your
conclusion. Be sure to include a description of what the data show in
addition to the test results. (The researchers compared several field
strengths and concluded that the natural strength is about right for fastest
healing.)

Chapter 14: Nonparametric Tests
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14.18

14.19

14.20

EXAMPLE 14.13

t

Exercise 7.19 (page 527) presents these data on the vitamin C content of
Haitian “bouillie” before and after cooking (in milligrams per 100 grams):

Sample 1 2 3 4 5

Before 73 79 86 88 78
After 20 27 29 36 17

Is there a significant loss of vitamin C in cooking? Use a test that does not
require normality.

Exercise 7.32 (page 531) gives data on the vitamin C content of 27 bags of
wheat soy blend at the factory and five months later in Haiti. We want to
know if vitamin C has been lost during transportation and storage. Describe
what the data show about this question. Then use a rank test to see whether
there has been a significant loss.

Exercise 7.33 (page 532) contains data from a student project that
investigated whether right-handed people can turn a knob faster clockwise
than they can counterclockwise. Describe what the data show, then state
hypotheses and do a test that does not require normality. Report your
conclusions carefully.

We have now considered alternatives to the matched pairs and two-sample
tests for comparing the magnitude of responses to two treatments. To com-
pare more than two treatments, we use one-way analysis of variance (ANOVA)
if the distributions of the responses to each treatment are at least roughly
normal and have similar spreads. What can we do when these distribution
requirements are violated?

5

14.3 The Kruskal-Wallis Test

14.3 The Kruskal-Wallis Test

Lamb’s-quarter is a common weed that interferes with the growth of corn. A re-
searcher planted corn at the same rate in 16 small plots of ground, then randomly
assigned the plots to four groups. He weeded the plots by hand to allow a fixed num-
ber of lamb’s-quarter plants to grow in each meter of corn row. These numbers were
0, 1, 3, and 9 in the four groups of plots. No other weeds were allowed to grow, and
all plots received identical treatment except for the weeds. Here are the yields of corn
(bushels per acre) in each of the plots:

Weeds Corn Weeds Corn Weeds Corn Weeds Corn
per meter yield per meter yield per meter yield per meter yield

0 166.7 1 166.2 3 158.6 9 162.8
0 172.2 1 157.3 3 176.4 9 142.4
0 165.0 1 166.7 3 153.1 9 162.7
0 176.9 1 161.1 3 156.0 9 162.4
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Normal quantile plots for the corn yields in the four treatment
groups in Example 14.13.
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FIGURE 14.9
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The summary statistics are as follows:

Weeds Mean Std. dev.

0 4 170.200 5.422
1 4 162.825 4.469
3 4 161.025 10.493
9 4 157.575 10.118

The sample standard deviations do not satisfy our rule of thumb that for safe use
of ANOVA the largest should not exceed twice the smallest. Normal quantile plots
(Figure 14.9) show that outliers are present in the yields for 3 and 9 weeds per meter.
These are the correct yields for their plots, so we have no justification for removing
them. We may want to use a nonparametric test.
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The ANOVA test concerns the means of the several populations represented
by our samples. For Example 14.13, the ANOVA hypotheses are

:

: not all four means are equal

For example, is the mean yield in the population of all corn planted un-
der the conditions of the experiment with no weeds present. The data should
consist of four independent random samples from the four populations, all
normally distributed with the same standard deviation.

The is a rank test that can replace the ANOVA test.
The assumption about data production (independent random samples from
each population) remains important, but we can relax the normality assump-
tion. We assume only that the response has a continuous distribution in each
population. The hypotheses tested in our example are:

: yields have the same distribution in all groups

: yields are systematically higher in some groups than in others

“Systematically higher” has the precise meaning described in Section 14.1. If
all of the population distributions have the same shape (normal or not), these
hypotheses take a simpler form. The null hypothesis is that all four popula-
tions have the same yield. The alternative hypothesis is that not all
four median yields are equal.

Recall the analysis of variance idea: we write the total observed variation
in the responses as the sum of two parts, one measuring variation among
the groups (sum of squares for groups, SSG) and one measuring variation
among individual observations within the same group (sum of squares for
error, SSE). The ANOVA test, roughly speaking, rejects the null hypothe-
sis that the mean responses are equal in all groups if SSG is large relative
to SSE.

The idea of the Kruskal-Wallis rank test is to rank all the responses from
all groups together and then apply one-way ANOVA to the ranks rather than
to the original observations. If there are observations in all, the ranks are
always the whole numbers from 1 to . The total sum of squares for the
ranks is therefore a fixed number no matter what the data are. So we do
not need to look at both SSG and SSE. Although it isn’t obvious without
some unpleasant algebra, the Kruskal-Wallis test statistic is essentially just
SSG for the ranks. We give the formula, but you should rely on software
to do the arithmetic. When SSG is large, that is evidence that the groups
differ.

a

a

Hypotheses and assumptions

The Kruskal-Wallis test

0 0 1 3 9

0

0

14.3 The Kruskal-Wallis Test

m m m m

m
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Draw independent SRSs of sizes , , , from populations. There
are observations in all. Rank all observations and let be the sum
of the ranks for the th sample. The is

12
3( 1)

( 1)

When the sample sizes are large and all populations have the same
continuous distribution, has approximately the chi-square distribution
with 1 degrees of freedom.

The rejects the null hypothesis that all populations
have the same distribution when is large.

We now see that, like the Wilcoxon rank sum statistic, the Kruskal-Wallis
statistic is based on the sums of the ranks for the groups we are comparing.
The more different these sums are, the stronger is the evidence that responses
are systematically larger in some groups than in others.

The exact distribution of the Kruskal-Wallis statistic under the null
hypothesis depends on all the sample sizes to , so tables are awkward.
The calculation of the exact distribution is so time-consuming for all but the
smallest problems that even most statistical software uses the chi-square ap-
proximation to obtain -values. As usual, there is no usable exact distribution
when there are ties among the responses. We again assign average ranks to
tied observations.
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In Example 14.13, there are 4 populations and 16 observations. The sample
sizes are equal, 4. The 16 observations arranged in increasing order, with their
ranks, are

Yield 142.4 153.1 156.0 157.3 158.6 161.1 162.4 162.7

Rank 1 2 3 4 5 6 7 8

Yield 162.8 165.0 166.2 166.7 166.7 172.2 176.4 176.9

Rank 9 10 11 12.5 12.5 14 15 16

There is one pair of tied observations. The ranks for each of the four treatments are

Weeds Ranks Sum of ranks

0 10 12.5 14 16 52.5
1 4 6 11 12.5 33.5
3 2 3 5 15 25.0
9 1 7 8 9 25.0

^

i

2

2
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Wilcoxon Scores (Rank Sums) for Variable YIELD
Classified by Variable WEEDS

Sum of Expected Std Dev Mean
WEEDS N Scores Under H0 Under H0 Score

0 4 52.5000000 34.0 8.24014563 13.1250000
1 4 33.5000000 34.0 8.24014563 8.3750000
3 4 25.0000000 34.0 8.24014563 6.2500000
9 4 25.0000000 34.0 8.24014563 6.2500000

Average Scores Were Used for Ties

Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 5.5725 DF = 3 Prob > CHISQ = 0.1344

Output from SAS for the Kruskal- Wallis test applied to the data
in Example 14.13. SAS uses the chi-square approximation to obtain a -value.
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Figure 14.10 displays the output from the SAS statistical software, which
gives the results 5 5725 and 0 1344. The software makes a small
adjustment for the presence of ties that accounts for the slightly larger value
of . The adjustment makes the chi-square approximation more accurate. It
would be important if there were many ties.

As an option, SAS will calculate the exact -value for the Kruskal-Wallis
test. The result for Example 14.14 is 0 1299. This result required several
hours of computing time. Fortunately, the chi-square approximation is quite
accurate. The ordinary ANOVA test gives 1 73 with 0 2130. Al-
though the practical conclusion is the same, ANOVA and Kruskal-Wallis do
not agree closely in this example. The rank test is more reliable for these small
samples with outliers.
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The Kruskal-Wallis statistic is therefore

12
3( 1)

( 1)

12 52 5 33 5 25 25
(3)(17)

(16)(17) 4 4 4 4

12
(1282 125) 51 5 56

272

Referring to the table of chi-square critical points (Table G) with df 3, we find that
the -value lies in the interval 0 10 0 15. This small experiment suggests that
more weeds decrease yield but does not provide convincing evidence that weeds have
an effect.
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Kruskal-Wallis test
one-way analysis

of variance

Kruskal-Wallis statistic

14.21

(a)

(b)

14.22

H

H
I

I P

Statistical software is needed to do these exercises without unpleasant hand
calculations. If you do not have access to software, omit normal quantile
plots, find the Kruskal-Wallis statistic H by hand, and use the chi-square table
to get approximate P -values.

The compares several populations on the basis of inde-
pendent random samples from each population. This is the

setting.

The null hypothesis for the Kruskal-Wallis test is that the distribution of the
response variable is the same in all the populations. The alternative hypoth-
esis is that responses are systematically larger in some populations than in
others.

The can be viewed in two ways. It is essentially
the result of applying one-way ANOVA to the ranks of the observations. It is
also a comparison of the sums of the ranks for the several samples.

When the sample sizes are not too small and the null hypothesis is true, for
comparing populations has approximately the chi-square distribution with

1 degrees of freedom. We use this approximate distribution to obtain -
values.

How do nematodes (microscopic worms) affect plant growth? A botanist
prepares 16 identical planting pots and then introduces different numbers
of nematodes into the pots. A tomato seedling is transplanted into each plot.
Here are data on the increase in height of the seedlings (in centimeters) 16
days after planting. (Data provided by Matthew Moore.)

Nematodes Seedling growth

0 10.8 9.1 13.5 9.2
1,000 11.1 11.1 8.2 11.3
5,000 5.4 4.6 7.4 5.0

10,000 5.8 5.3 3.2 7.5

We applied ANOVA to these data in Exercise 12.10 (page 782). Because the
samples are very small, it is difficult to assess normality.

What hypotheses does ANOVA test? What hypotheses does Kruskal-
Wallis test?

Find the median growth in each group. Do nematodes appear to retard
growth? Apply the Kruskal-Wallis test. What do you conclude?

The presence of harmful insects in farm fields is detected by erecting boards
covered with a sticky material and then examining the insects trapped on
the board. To investigate which colors are most attractive to cereal leaf
beetles, researchers placed six boards of each of four colors in a field of oats
in July. The table below gives data on the number of cereal leaf beetles

SUMMARY
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trapped. (Based on M. C. Wilson and R. E. Shade, “Relative attractiveness
of various luminescent colors to the cereal leaf beetle and the meadow
spittlebug,” 60 (1967), pp. 578–580.)

Color Insects trapped

Lemon yellow 45 59 48 46 38 47
White 21 12 14 17 13 17
Green 37 32 15 25 39 41
Blue 16 11 20 21 14 7

We applied ANOVA to these data in Exercise 12.11 (page 782).

Make a normal quantile plot for each group. Are there indications of
lack of normality?

What hypotheses does ANOVA test? What hypotheses does Kruskal-
Wallis test?

Find the median number of beetles trapped by boards of each color.
Which colors appear more effective? Use the Kruskal-Wallis test to
see if there are significant differences among the colors. What do you
conclude?

Table 1.8 (page 40) presents data on the calorie and sodium content of
selected brands of beef, meat, and poultry hot dogs. We will regard these
brands as random samples from all brands available in food stores. We saw
that the distribution of calories in meat hot dogs had two clusters and a
low outlier. We might therefore prefer to use a nonparametric test. Give the
five-number summaries for the three types of hot dog and then apply the
Kruskal-Wallis test. Report your conclusions carefully.

Exercise 14.22 gives data on the counts of insects attracted by boards of
four different colors. Carry out the Kruskal-Wallis test by hand, following
these steps.

What are , the , and in this example?

Arrange the counts in order and assign ranks. Be careful about ties.
Find the sum of the ranks for each color.

Calculate the Kruskal-Wallis statistic . How many degrees of freedom
should you use for the chi-square approximation of its null-hypothesis
distribution? Use the chi-square table to give an approximate -value.

Repeat the analysis of Exercise 14.23 for the sodium content of hot dogs,
using the data in Table 1.8 (page 40).

Table 12.4 (page 781) gives data on the effect of four treatments on the
spatial-temporal reasoning ability of preschool children. The treatments
are piano lessons, singing lessons, computer instruction, and no lessons of
any kind. The response variable is the change in a child’s score on a test of
spatial-temporal reasoning.

Give the five-number summary for each group. What do the data
suggest about the effects of the treatments?

i
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14.28
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cannot
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Medical, Epidemiological and Psychological Studies,

Make a normal quantile plot for each group. Which group deviates
most from normality?

Do the treatments differ significantly in their ability to improve
children’s spatial-temporal reasoning?

Example 14.6 describes a study of the attitudes of people attending outdoor
fairs about the safety of the food served at such locations. The full data set
is stored on the CD as the file eg14.06.dat. It contains the responses of 303
people to several questions. The variables in this data set are (in order):

subject hfair sfair sfast srest gender

The variable “sfair” contains responses to the safety question described
in Example 14.6. The variables “srest” and “sfast” contain responses to
the same question asked about food served in restaurants and in fast-food
chains. Explain carefully why we use the Kruskal-Wallis test to see if
there are systematic differences in perceptions of food safety in these three
locations.

In a study of heart disease in male federal employees, researchers classified
356 volunteer subjects according to their socioeconomic status (SES) and
their smoking habits. There were three categories of SES: high, middle,
and low. Individuals were asked whether they were current smokers,
former smokers, or had never smoked. (Ray H. Rosenman et al., “A 4-
year prospective study of the relationship of different habitual vocational
physical activity to risk and incidence of ischemic heart disease in volunteer
male federal employees,” in P. Milvey (ed.),

New York Academy of
Sciences, 301 (1977), pp. 627–641.) Here are the data, as a two-way table of
counts:

SES Never (1) Former (2) Current (3)

High 68 92 51
Middle 9 21 22
Low 22 28 43

The data for all 356 subjects are stored in the file ex14.28.dat on the CD.
Smoking behavior is stored numerically as 1, 2, or 3 using the codes given
in the column headings above.

Higher SES people in the United States smoke less as a group than
lower SES people. Do these data show a relationship of this kind? Give
percents that back your statements.

Apply the chi-square test to see if there is a significant relationship
between SES and smoking behavior.

The chi-square test ignores the ordering of the responses. Use the
Kruskal-Wallis test (with many ties) to test the hypothesis that some
SES classes smoke systematically more than others.
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As in ANOVA, we often want to carry out a
procedure following a Kruskal-Wallis test to tell us groups differ
significantly. Here is a simple method: If we carry out tests at fixed
significance level 0 05 , the probability of false rejection among the

tests is always no greater than 0.05. That is, to get overall significance
level 0.05 for all of comparisons, do each individual comparison at the
0 05 level. In Exercise 14.23 you found a significant difference among
the calorie contents of three types of hot dog. Now we will explore multiple
comparisons.

Write down all of the pairwise comparisons we can make, for example,
beef versus meat. There are three possible pairwise comparisons.

Carry out three Wilcoxon rank sum tests, one for each of the three pairs
of hot dog types. What are the three two-sided -values?

For purposes of multiple comparisons, any of these three tests is
significant if its -value is no greater than 0 05 3 0 0167. Which
pairs differ significantly at the overall 0.05 level?

Exercise 14.29 outlines how to use the Wilcoxon rank sum test several
times for multiple comparisons with overall significance level 0.05 for all
comparisons together. In Exercise 14.22 you found that the numbers of
beetles attracted by boards of four colors differ significantly. At the overall
0.05 level, which pairs of colors differ significantly? (Hint: There are 6
possible pairwise comparisons among 4 colors.)

1.

2.

3.

4.

5.

6.

7.

1 2

1 2

NOTES
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NOTES

multiple comparisons

. $ .

Data provided by Sam Phillips, Purdue University. The data have been slightly
modified to remove one tie to simplify Exercise 14.4.

For purists, here is the precise definition: is than if

( ) ( )

for all , with strict inequality for at least one . The Wilcoxon rank sum test is
effective against this alternative in the sense that the power of the test approaches 1
(that is, the test becomes more certain to reject the null hypothesis) as the number
of observations increases.

Data from Huey Chern Boo, “Consumers’ perceptions and concerns about safety and
healthfulness of food served at fairs and festivals,” M.S. thesis, Purdue University,
1997.

Data provided by Susan Stadler, Purdue University.

See Note 1.

Using SAS Version 6.12 on a 166 MHz Pentium personal computer (a quite fast
machine at the time this was written) required about 3.5 hours to obtain the exact

-value in Example 14.14. No wonder very few software systems offer exact -values
for the Kruskal-Wallis statistic.

For more details on multiple comparisons (but not the simple procedure given here),
see M. Hollander and D. A. Wolfe, Wiley, New
York, 1973. This book is a useful reference on applied aspects of nonparametric
inference in general.
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